结合我国煤电为主的具体国情,研究所开展了相关项目研究,根据多能互补、品位匹配的原则,将太阳能与燃煤火电机组互补集成,通过抛物槽式太阳能集热器聚集300℃以下的中低温太阳能,替代燃煤机组的高压给水加热器加热锅炉给水,而被替代的高温、高压蒸汽抽汽可在汽轮机中继续膨胀作功。由于中低温太阳能与锅炉给水品位更相匹配,可减少传热过程的不可逆损失,有效增加电站出功。同时,300℃太阳热能借助先进的大规模燃煤机组,与高参数的蒸汽朗肯循环相结合,可提升中低温太阳能的作功能力,完成高效热转功,太阳能净发电峰值效率可达24%左右,年平均发电效率为18%左右,与集热温度近400℃的太阳能单独发电相比,仍高约4个百分点,这意味着互补系统单位出功所需太阳能集热面积从单独槽式热系统的6.3m2/kW左右降至5.2-5.8m2/kW,总镜场投资也相应降低8-17%左右。
同时,相对单一太阳能热发电,互补电站的太阳能集热温度在300℃以下,可采用较为便宜的低聚光比槽式集热器,有利于进一步降低成本,太阳能热发电的比投资将控制在10000元/kW以下,发电成本为0.8元/kWh左右,均低于太阳能单独热发电水平,并随着化石燃料价格逐渐上涨而显示出更强的竞争力。此外,太阳能与火电机组互补发电可使中低温太阳能热发电规模发展到单台容量几万千瓦,与一座太阳能单独发电电站规模相当,因此具有低成本、规模化开发利用太阳能资源的潜力。
通过与常规火电站结合,中低温太阳能实现了“四两拨千斤”地高效发电,为满足我国大幅提高可再生能源利用率的重大战略需求,加快太阳能热利用在国家能源结构的重要作用,提供了一个行之有效的新方式。